Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(5): 2452-2465, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224337

RESUMO

ZrN nanofluids may exhibit unique optoelectronic properties because of the matching of the solar spectrum with interband transitions and localized surface plasmon resonance (LSPR). Nevertheless, these nanofluids have scarcely been investigated, mainly because of the complexity of the current synthetic routes that involve aggressive chemicals and high temperatures. This work aims to validate reactive dc magnetron sputtering of zirconium in Ar/N2 as an environmentally benign, annealing-free method to produce 22 nm-sized, highly crystalline, stoichiometric, electrically conductive, and plasmonic ZrN nanoparticles (NPs) of cubic shape and to load them into vacuum-compatible liquids of different chemical compositions (polyethylene glycol (PEG), paraffin, and pentaphenyl trimethyl trisiloxane (PTT)) in one step. The nanofluids demonstrate LSPR in the red/near-IR range that gives them a bluish color in transmittance. The nanofluids also demonstrate complex photoluminescence behavior such that ZrN NPs enhance the photoluminescence (PL) intensity of paraffin and PEG, whereas the PL of PTT remains almost invariable. Based on DFT calculations, different energetic barriers to charge transfer between ZrN and the organic molecules are suggested as the main factors that influence the observed optoelectronic response. Overall, our study provides a novel approach to the synthesis of transition metal nitride nanofluids in an environmentally friendly manner, deepens the understanding of the interactions between ZrN and organic molecules, and unveils new optoelectronic phenomena in such systems.

2.
Nanoscale Adv ; 5(18): 4809-4818, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705790

RESUMO

Despite extensive research since 1996, there are still open questions regarding the primary location of the nucleation process, the growth mechanism of the nanoparticles (NPs), and the influence of the liquid properties on the ultimate size of the NPs for the magnetron sputtering of metals onto liquids. Hence, for the first time to the authors' knowledge, the particle size evolution is in situ and in real-time examined during and after the sputtering of the silver atoms onto silicone oil, i.e., Sputtering onto Liquids (SoL) process. The particle size distribution (PSD) is measured via the Light Extinction Spectroscopy (LES) technique, and the deposition rate and stirring speed effects on the PSDs are analyzed. Based on De Brouckere mean diameters, the size evolution of silver nanoparticles (Ag NPs) over time is monitored. Ag NPs bigger than 20 nm are detected, and the PSDs are shown to be poly-disperse, which is also supported by the ex situ TEM measurements and in situ time-resolved absorption spectra. Moreover, it is shown that aggregation and growth of Ag NPs occur both at the plasma-liquid interface and inside the silicone oil during and after the magnetron sputtering. Despite the same amount of deposited silver, the growth kinetics of Ag NPs in silicone oil vary at different deposition rates. In particular, at higher deposition rates, larger NPs are formed. Stirring is seen to help disaggregate the particle lumps. Faster stirring does not substantially influence the final size but promotes the formation of smaller NPs (<20 nm). Also, low colloidal stability of Ag NPs in silicone oil is observed.

3.
Nanotechnology ; 34(26)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36972569

RESUMO

Plasma-based sputtering onto liquids (SoL) is a straightforward approach for synthesizing small metal nanoparticles (NPs) without additional stabilizing reagents. In this work, nonionic surfactant Triton X-100 was used for the first time as a host liquid for the SoL process and the production of colloidal solutions of gold, silver and copper NPs was demonstrated. The average diameter of spherical Au NPs lies in the range from 2.6 to 5.5 nm depending on the conditions. The approach presented here opens the pathway to the production of concentrated dispersions of metal NPs of high purity that can be dispersed in water for future usage, therefore extending further the reach of this synthesis pathway.

4.
Nanoscale Adv ; 5(3): 955-969, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756512

RESUMO

Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol-1), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of µm s-1, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to Cu2O and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer L < 1.4 nm, grafting density σ < 0.20, and the average distance between the grafted chains D > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.

5.
Phys Chem Chem Phys ; 25(4): 2803-2809, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36412107

RESUMO

This paper reports on the effect of the solvent viscosity on the formation of gold nanoparticles (Au NPs) during the sputtering onto liquid (SoL) process. All other parameters related to the plasma and the host liquid are kept constant. SoL is a simple highly reproducible approach for the preparation of colloidal dispersions of small naked NPs. The properties of the final product are determined by both the sputtering parameters and the host liquid characteristics. As a model system we chose to sputter a gold target by a direct-current magnetron discharge onto a line of polymerized rapeseed oils having similar surface tension (32.6-33.1 mJ m-2 at RT). It was found that well-dispersed Au NPs grow in the bulk solution of oils with low viscosities (below 630 cP at 25 °C), while a gold film forms onto the surface of high viscosity liquids (more than 1000 cP at 25 °C). The mean diameter of the individual Au NPs is in the range of about 2.1-2.5 nm according to transmission electron microscopy.

6.
Beilstein J Nanotechnol ; 13: 10-53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35059275

RESUMO

Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.

7.
Nanoscale Adv ; 3(16): 4780-4789, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134317

RESUMO

We report on the growth of metal- and metal-oxide based nanoparticles (NPs) in heated polyol solutions. For this purpose, NPs are produced by the sputtering of a silver, gold, or a copper target to produce either silver, gold, or copper oxide NPs in pentaerythritol ethoxylate (PEEL) which has been annealed up to 200 °C. The objective of the annealing step is the fine modulation of their size. Thus, the evolution of the NP size and shape after thermal annealing is explained according to collision/coalescence kinetics and the affinity between the metal-/metal-oxide and PEEL molecule. Moreover, highlights of few phenomena arising from the annealing step are described such as (i) the reduction of copper oxide into copper by the polyol process and (ii) the effective formation of carbon dots after annealing at 200 °C.

8.
Nanotechnology ; 31(45): 455303, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32726767

RESUMO

Effective methods for the synthesis of high-purity nanoparticles (NPs) have been extensively studied for a few decades. Among others, cold plasma-based sputtering metals onto a liquid substrate appears to be a very promising technique for the synthesis of high-purity NPs. The process enables the production of very small NPs without using any toxic reagents and complex chemical synthesis routes, and enables the synthesis of alloy NPs which can be the first step towards the formation of porous NPs. In this paper, the synthesis of gold-copper alloy NPs has been performed by co-sputtering gold and copper targets over pentaerythritol ethoxylate. The resulting solutions contain a mixture of gold, copper oxide, and alloy NPs having a radius of few angstroms. The annealing of these NPs, inside the solution, has been performed in order to increase their size and further induce the dealloying of the Au-Cu NPs. The resulting NPs exhibit either a nanoporous structure or are self-organized in an agglomerate of small NPs.

9.
ACS Appl Mater Interfaces ; 12(4): 4998-5007, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31895531

RESUMO

The study provides new evidence for Ag-coated polyester (PES) mediating Escherichia coli inactivation by way of genetically engineered E. coli (without porins, from now denoted porinless bacteria). This allows the quantification of the bactericidal kinetics induced by the Ag surface without the intervention of Ag ions. Bacterial inactivation mediated by Ag-PES was seen to be completed within 60 min. The samples were prepared by high-power impulse magnetron sputtering (HiPIMS) at different sputter powers. In anaerobic media, this process required 120 min. The amounts of ions (Ar+, Ag+, and Ag2+) generated during the deposition by direct current magnetron sputtering (DCMS) and HiPIMS were determined by mass spectrometry. The thickness of the Ag films sputtered on PES by DCMS (0.28 A) during 100 s was found to be 340 nm. Thicknesses of 250, 230, and 200 nm were found when sputtering with HiPIMS was tuned at 8, 17, and 30 A, respectively. By scanning transmission electron microscopy (STEM-HAADF), the atomic distribution of Ag and oxygen was detected. By X-ray photoelectron spectroscopy (XPS), a shift in the Ag oxidation state was observed within the bacterial inactivation period. This reveals redox catalysis within the time required for the total bacterial inactivation due to the interaction between the bacterial suspension and Ag-PES. Surface properties of the Ag-coated PES samples were additionally investigated by X-ray diffraction (XRD). The formation of Ag plasmon was detected by diffuse reflectance spectroscopy (DRS) and was a function of the applied sputtering energy. The indoor sunlight irradiation dose required to induce an accelerated bacterial inactivation was found to be 5-10 mW/cm2.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Escherichia coli/crescimento & desenvolvimento , Viabilidade Microbiana , Prata/química , Propriedades de Superfície
10.
Phys Chem Chem Phys ; 20(41): 26068-26071, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30307015

RESUMO

The cubic phase of pure zirconia (ZrO2) is stabilized in dense thin films through a controlled introduction of oxygen vacancies (O defects) by cold-plasma-based sputtering deposition. Here, we show that the cubic crystals present at the film/substrate interface near-region exhibit fast ionic transport, which is superior to what is obtained with similar yttrium-stabilized cubic zirconia thin films.

11.
Small ; 12(21): 2885-92, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27061060

RESUMO

Controlling the porosity, the shape, and the morphology of Kirkendall hollow nanostructures is the key factor to tune the properties of these tailor-made nanomaterials which allow in turn broadening their applications. It is shown that by applying a continuous oxidation to copper nanowires following a temperature ramp protocol, one can synthesize cuprous oxide nanotubes containing periodic copper nanoparticles. A further oxidation of such nanoobjects allows obtaining cupric oxide nanotubes with a bamboo-like structure. On the other hand, by applying a sequential oxidation and reduction reactions to copper nanowires, one can synthesize hollow nanoobjects with complex shapes and morphologies that cannot be obtained using the Kirkendall effect alone, such as necklace-like cuprous oxide nanotubes, periodic solid copper nanoparticles or hollow cuprous oxide nanospheres interconnected with single crystal cuprous oxide nanorods, and aligned and periodic hollow nanospheres embedded in a cuprous oxide nanotube. The strategy demonstrated in this study opens new avenues for the engineering of hollow nanostructures with potential applications in gas sensing, catalysis, and energy storage.

12.
Nanoscale ; 8(1): 141-8, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26611109

RESUMO

Nanoporous materials are of great importance for a broad range of applications including catalysis, optical sensors and water filtration. Although several approaches already exist for the creation of nanoporous materials, the race for the development of versatile methods, more suitable for the nanoelectronics industry, is still ongoing. In this communication we report for the first time on the possibility of generating nanoporosity in silver nanocolumns using a dry approach based on the oxidation of silver by direct exposure to a commercially available radio-frequency air plasma. The silver nanocolumns are created by glancing angle deposition using magnetron sputtering of a silver target in pure argon plasma. We show that upon exposure to the rf air plasma, the nanocolumns transform from solid silver into nanoporous silver oxide. We further show that by tuning the plasma pressure and the exposure duration, the oxidation process can be finely adjusted allowing for precisely controlling the morphology and the nanoporosity of the silver oxide nanocolumns. The generation of porosity within the silver nanocolumns is explained according to a cracking-induced oxidation mechanism based on two repeated events occurring alternately during the oxidation process: (i) oxidation of silver upon exposure to the air plasma and (ii) generation of nanocracks and blisters within the oxide layer due to the high internal stress generated within the material during oxidation.

13.
ACS Nano ; 8(2): 1854-61, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24476494

RESUMO

The nanomanipulation of metal nanoparticles inside oxide nanotubes, synthesized by means of the Kirkendall effect, is demonstrated. In this strategy, a focused electron beam, extracted from a transmission electron microscope source, is used to site-selectively heat the oxide material in order to generate and steer a metal ion diffusion flux inside the nanochannels. The metal ion flux generated inside the tube is a consequence of the reduction of the oxide phase occurring upon exposure to the e-beam. We further show that the directional migration of the metal ions inside the nanotubes can be achieved by locally tuning the chemistry and the morphology of the channel at the nanoscale. This allows sculpting organized metal nanoparticles inside the nanotubes with various sizes, shapes, and periodicities. This nanomanipulation technique is very promising since it enables creating unique nanostructures that, at present, cannot be produced by an alternative classical synthesis route.

14.
Small ; 9(17): 2838-43, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23440974

RESUMO

Highly ordered ultra-long oxide nanotubes are fabricated by a simple two-step strategy involving the growth of copper nanowires on nanopatterned template substrates by magnetron sputtering, followed by thermal annealing in air. The formation of such tubular nanostructures is explained according to the nanoscale Kirkendall effect. The concept of this new fabrication route is also extendable to create periodic zero-dimensional hollow nanostructures.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Óxidos/química
15.
J Phys Condens Matter ; 21(17): 175403, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21825418

RESUMO

Using ab initio calculations, we have systematically studied the structure of δ-Bi(2)O(3) (fluorite prototype, 25% oxygen vacancies) probing [Formula: see text] and combined [Formula: see text] and [Formula: see text] oxygen vacancy ordering, random distribution of oxygen vacancies with two different statistical descriptions as well as local relaxations. We observe that the combined [Formula: see text] and [Formula: see text] oxygen vacancy ordering is the most stable configuration. Radial distribution functions for these configurations can be classified as discrete (ordered configurations) and continuous (random configurations). This classification can be understood on the basis of local structural relaxations. Up to 28.6% local relaxation of the oxygen sublattice is present in the random configurations, giving rise to continuous distribution functions. The phase stability obtained may be explained with the bonding analysis. Electron lone-pair charges in the predominantly ionic Bi-O matrix may stabilize the combined [Formula: see text] and [Formula: see text] oxygen vacancy ordering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...